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Abstract

Growth directly influences production rate and therefore is one of the most important and well-studied traits in animal breeding. However,
understanding the genetic basis of growth has been hindered by its typically complex polygenic architecture. Here, we performed
quantitative trait locus mapping and genome-wide association studies for 10 growth traits that were observed over 2 years in 1,100 F1

captive-bred trevally (Pseudocaranx georgianus). We constructed the first high-density linkage map for trevally, which included 19,861 sin-
gle nucleotide polymorphism markers, and discovered 8 quantitative trait loci for height, length, and weight on linkage groups 3, 14, and
18. Using genome-wide association studies, we further identified 113 single nucleotide polymorphism-trait associations, uncovering 10 ge-
netic hot spots involved in growth. Two of the markers found in the genome-wide association studies colocated with the quantitative trait
loci previously mentioned, demonstrating that combining quantitative trait locus mapping and genome-wide association studies represents
a powerful approach for the identification and validation of loci controlling complex traits. This is the first study of its kind for trevally. Our
findings provide important insights into the genetic architecture of growth in this species and supply a basis for fine mapping quantitative
trait loci, genomic selection, and further detailed functional analysis of the genes underlying growth in trevally.
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Introduction
Growth facilitates essential functions such as reproduction or the
ability to adapt to environments. Although there are exceptions,
increase in body size is usually positively correlated with numer-
ous fitness traits such as higher mating success and fecundity,
increased offspring quality and lengthened longevity (Gebhardt-
Henrich and Richner 1998; Dmitriew 2011). Most vertebrates ex-
hibit a finite amount of growth. In fish, however, the process of
growing is indeterminate, or indefinite, and continues through-
out their life (Weatherley 1972), although the rate tends to de-
cline as body size increases (Pedersen and Jobling 1989). This
highly complex process is the result of interactions between envi-
ronmental effects and genetic differences. Factors including sex
(e.g. Imsland and Jonassen 2003), age, or food availability (e.g.
Jones 1986) influence growth rate, as well as abiotic factors
changing seasonally such as temperature (e.g. Karås and
Klingsheim 1997; Imsland et al. 2007), photoperiod (e.g. Imsland
and Jonassen 2003), or oxygen levels (e.g. Brett and Groves 1979).
The genetic basis of growth traits is typically highly polygenic
(Wellenreuther and Hansson 2016). Functional relationships be-
tween genetic variations and physiological parameters of growth
have been described in commercially relevant species such as
cod (Gadus morhua) [see review by Imsland and Jónsdóttir (2002)],
Atlantic salmon (Salmo salar) (Tsai et al. 2015), or tilapia (Tilapia

mossambica) (Liu et al. 2014), but are still poorly understood in

many nonmodel species.
With the development of next-generation sequencing technol-

ogies the cost of high-density genotyping has drastically de-

creased, therefore enabling the more widespread application of

quantitative trait locus (QTL) mapping experiments. Many var-

iants associated with complex phenotypes have since been found

in a variety of nonmodel species. However, QTL mapping

approaches only allow the identification of genetic regions that

are polymorphic between 2 parents, and relevant in a particular

environment, therefore, potentially missing some common var-

iants associated with the traits (Mackay 2001). For this reason,

the location and effects of detected QTLs can vary between map-

ping populations. For example, in the Atlantic salmon, QTLs in-

volved in growth have been found on different linkage groups

(LGs) according to different studies (Baranski et al. 2010; Gutierrez

et al. 2012; Tsai et al. 2015; Besnier et al. 2020).
Recently, genome-wide association studies (GWAS) have been

widely employed to detect QTLs both in captive (Palaiokostas

et al. 2018) and natural populations (Santure and Garant 2018).

This technique identifies associations between markers and phe-

notypes based on linkage disequilibrium (LD) (Meuwissen and

Goddard 2010). Compared with QTL mapping, GWAS can be con-

ducted on genetically diverse, unrelated individuals and is partic-

ularly advantageous when controlled crossing and generation of

Received: October 10, 2022. Accepted: January 6, 2022
VC The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

G3, 2022, 12(3), jkac016

https://doi.org/10.1093/g3journal/jkac016
Advance Access Publication Date: 20 January 2022

Genomic Prediction

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/12/3/jkac016/6512062 by guest on 27 M

arch 2022

http://orcid.org/0000-0003-2479-2009
http://orcid.org/0000-0001-9224-056X
http://orcid.org/0000-0002-8351-7931
https://orcid.org/0000-0002-2764-8291
https://academic.oup.com/


large segregating populations is difficult. GWAS has proved use-
ful for the identification of loci associated with numerous growth
traits in fish (e.g. Yang et al. 2020). However, the power of GWAS
relies on the number of markers in relation to the extent of LD in
the population (Newell et al. 2011). When applied to natural popu-
lations or collections of outcrossing individuals, characterized by
a rapid LD decay, tens of thousands of markers are often required
to obtain an adequate level of resolution. Because of the intrinsic
limitations of statistical methods comparing thousands of tests,
GWAS has a higher frequency of false discovery of loci than QTL
mapping (Hayes et al. 2013). A final disadvantage of GWAS is its
low power for detecting rare allelic variants. However, their fre-
quency can be increased in controlled crosses and therefore cap-
tured with QTL mapping. Hence, combining GWAS and QTL
mapping often gives more complete and reliable results than us-
ing one of the methods alone (Fraslin et al. 2020).

Aquaculture is the fastest growing food-production sector in
Aotearoa New Zealand. Currently, the local industry relies almost
exclusively on the farming of 3 species: Greenshell mussels (Perna
canaliculus), Pacific oysters (Crassostrea gigas), and only 1 finfish, king/
chinook salmon (Oncorhynchus tshawytscha), which is an introduced
species (Camara and Symonds 2014; Symonds et al. 2019). Hence,
there is a strong interest in diversifying the range of species available
for aquaculture. The native finfish silver trevally (Pseudocaranx geor-
gianus, Cuvier 1833) has been identified as a suitable candidate for
New Zealand aquaculture. In Aotearoa, its M�aori name is araara.
Indigenous M�aori people have a strong cultural connection to tre-
vally, where it is considered as taonga (i.e. has value, or is treasured).
Trevally is a shoaling pelagic species found throughout the coastal
waters of southern Australia and around New Zealand (Smith-Vaniz
and Jelks 2006). It is most common at depths of approximately 80 m,
although its range is thought to be 10–238 m and can reach over
40 years of age (Ministry for Primary Industries 2014; Bray 2020). In
many regions of New Zealand, trevally is a major component of rec-
reational and commercial fisheries (Ministry for Primary Industries
2014). For it to be suitable for commercial aquaculture, however, tre-
vally’s growth rate must be improved, which can be done using se-
lective breeding (Valenza-Troubat et al. 2021b).

In 2016, the Institute of Plant and Food Research (PFR) started
a selective breeding program on trevally, and has induced a wild
broodstock to create F1 offspring for this purpose. The primary
goal of the breeding program is to improve the growth rate, which
has been demonstrated to show both high heritability and tran-
scriptional plasticity in response to temperature (Valenza-
Troubat et al. 2021a, 2021b). Individuals attain sexual maturity
between years 3 and 4, which is also around the time when this
species reaches harvest size (Valenza-Troubat et al. 2021b). The
long-term breeding goal is to reduce the time to harvest to
around 2 years. In this study, we investigated the genetic archi-
tecture of 10 growth traits in the F1 new population of trevally.
More specifically, we genotyped and phenotyped 1,100 F1 trevally
to (1) generate a high-density linkage map; (2) detect rare QTLs
associated with growth using linkage mapping in a subfamily
comprising 89 individuals; (3) identify common SNPs associated
with growth using GWAS on the whole population; and (4) over-
lap the results and annotate supported regions.

Methods
Study population
The trevally population used in this study was generated as part
of a breeding program started at the PFR finfish research facility
in Nelson, New Zealand. The full description of holding

conditions and the pedigree are described in Valenza-Troubat
et al. (2021a, 2021b). Briefly, the population comprised of 13 wild
caught F0 broodstock and 1,100 F1 captive-bred offspring. In 2015,
induced mass spawning of the F0 generation in a single tank was
used to produce the offspring F1 generation. This resulted in a
complex pedigree, including a combination of unrelated, full-,
and half-siblings in the F1 generation. F1 offspring were held in a
single tank from hatch receiving the same feeding regime, light,
water flow, and aeration until the end of this experiment. The
seawater tanks in the facility are located on the seaward side of
Port Nelson and receive ambient seawater from an underground
bore that is filtered using mesh filters and UV treatment.

Phenotyping and trait estimation
Ten growth traits were used in the current study, namely pedun-
cle length (PL), height at 25 (H25), 50 (H50), and 75% (H75) of the
PL, estimated weight (EW), and related net gain traits (DPL, DH25,
DH50, DH75, and DEW, respectively) (Valenza-Troubat et al.
2021b). These measurements were recorded on 3 occasions
throughout the experiment, at the beginning (November 2017), in
the middle (October 2018), and at the end (November 2019), when
the fish were a little over 2, 3, and 4 years old, respectively. Using
the Morphometric Software (https://www.plantandfood.co.nz/
page/morphometric-software-home/), the outline of each fish
was extracted from images and morphometric were located, and
then used to make measurements. PL was measured by assessing
the distance between the upper lip and narrowest cross-section
of the tail. Height was measured at 3 positions along the fish:
25%, 50%, and 75% of the PL. The weight estimations (EW) were
done following a Bayesian hierarchical approach as described in
Froese et al. (2014). The net gain for each trait was calculated as
the difference from the initial measurement (November 2017)
with subsequent ones. The normality of the data was assessed vi-
sually using quantile–quantile (QQ) plots generated in the R sta-
tistical environment version 3.2.3 (R Development Core Team
2016).

Genotyping and variant calling
Samples of fin tissue from 13 tagged F0 and 1,100 F1 individuals
were collected and stored as described in Valenza-Troubat et al.
(2021a, 2021b). Total DNA was extracted as described in Ashton
et al. (2019) with minor modifications, and then quantified and
quality-checked by fluorescence, spectrophotometry and agarose
gel electrophoresis. The 13 F0 individuals were whole genome se-
quenced (paired-end, 125 bp reads) over 3 lanes of the HiSeq 2500
platform at the Australian Genome Research Facility (AGRF,
Melbourne, Australia). The F1 were genotyped using a modified
GBS approach (Elshire et al. 2011), as described in Valenza-
Troubat et al. (2021a, 2021b). A total of 12 pools of 96 samples
each were prepared and sent to AGRF for sequencing on a HiSeq
2500 platform (single-end, 100 bp reads). Sequencing data quality
for both F0 and F1 generations were checked using FastQC v0.11.7
(Andrews 2010). Raw reads from the F0 were trimmed using trim-
momatic v0.36 (Bolger et al. 2014) (using the parameters
HEADCROP: 9; TRAILING: 10; SLIDINGWINDOW: 5:20; MINLEN:
75). The F1 samples were demultiplexed from the 12 sequencing
libraries using the process_radtags module available in the
STACKs version 2.1 pipeline (Catchen et al. 2013) and the reads
were trimmed using Fastq-mcf in ea-utils v1.1.2-806 (minimum
sequence length¼ 50, quality threshold causing base remov-
al¼ 33) (Aronesty 2013). Read groups were added to all sequences
and bam files were sorted and indexed using Picard toolkit
(Broad_Institute 2015). Reads were then mapped to the reference
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genome (Catanach et al. 2021) using the Burrows–Wheeler Aligner

v0.7.17 (Li and Durbin 2010) and variants were called jointly with

the parallel module of freebayes v1.3.1 (Garrison and Marth

2012), with minimum of 5 observations and minimum mapping

quality of 10. The SNPs with single-sample sequence coverage

(sequencing depth)< 3 were removed to reduce the number of

putatively erroneous genetic variants, and missing data and mi-

nor allele frequency (MAF) were set to <20% and >0.05, respec-

tively.

Linkage map construction and QTL identification
The parents of each F1 individual in the dataset were identified

with Sequoia v2.0.7 (Huisman 2017) as reported in Valenza-

Troubat et al. (2021a, 2021b). The full SNP dataset (i.e. before the

stringent filtering performed for the parentage analysis) was fil-

tered for Mendelian errors (>5%), and checked for distorted segre-

gation using a chi-square test with a¼ 0.05. The linkage map was

constructed in Lep-MAP v3.0 (Rastas et al. 2013), using the largest

family. Markers were separated into linkage groups (LGs) with

the SeparateChromosomes module [logarithm of odds (LOD) lim-

it¼ 14, minimum markers per LG¼ 50]. The order of the markers

was computed with the OrderMarkers module. Single markers at

the end of each LG were removed if they were more than 3 cM

apart from the next closest marker. MapChart v2.32 (Voorrips

2002) was used to visualize the genetic map. As the F0 were as-

sumed to be outbred, the linkage map and the genotypes of the

mapping family were input as a 4-way cross in the R package R/

qtl version 1.47-9 (Broman et al. 2003) for interval mapping.

Standard interval mapping was performed and a genome-wide

permutation test (Doerge and Churchill 1996) with 1,000 permu-

tations was used to determine the LOD significance thresholds

(P-value¼ 0.05).

Genome-wide association study
GWAS was carried out on the entire genotyped F1 population

(n¼ 1,100). SNPs were removed if the call rate was smaller than

0.8, MAF < 0.01, if Mendel error rate >5% (based on trios identi-

fied with the parentage analysis carried out above), and they

were LD-pruned using an r2 > 0.80 in a 50-kb sliding window with

5 variants. Association analysis were performed using the Fixed

and random model Circulating Probability Unification (FarmCPU)

method (Liu et al. 2016) implemented in GAPIT3 v3.1.0 (Wang and

Zhang 2021). A Bayesian information criterion (BIC)-based model

selection was used to find the optimal number of principal com-

ponents (PCs) for each time measure, to account for family and

population structure. The cutoff for significant association was a

false discovery rate (FDR)-adjusted P-value¼ 0.05 (Benjamini and

Hochberg 1995), to control for multiple testing. To assess how

well the model used in GWAS accounted for population structure

and family relatedness, results of the GWAS were visualized with

QQ plots implemented in GAPIT3, which depicted the distribution

of the actual P-values compared with the theoretical ones.

Manhattan plots were used to visualize the SNPs associated with

the different phenotypes, using the physical position of the

markers on the reference genome.

Ethics statement
All research carried out in this study was reviewed and approved

by the animal ethics committee of Victoria University of

Wellington in New Zealand (application number 25976).

Results
Phenotypic values of growth traits
All offspring were phenotyped at the first measurement
(November 2017), while numbers decreased at the 2 subsequent
time points because of natural mortality that occurred during the
study. All traits showed a normal distribution and exhibited large
levels of phenotypic variation, as discussed in Valenza-Troubat
et al. (2021a, 2021b). A summary of the mean values and standard
deviations of the 10 growth phenotypes is shown in Table 1. In
both the family used for QTL mapping and in the entire popula-
tion used for GWAS, a normal distribution of the residuals was
observed for the 10 traits investigated (Fig. 1). Transgressive lines
(i.e. offspring that have more extreme phenotypes than the
parents) were observed in the population.

High-density linkage map
Sequencing of the 13 parental fishes generated 1.23 billion reads,
corresponding to an average genome coverage of 13� per individ-
ual. Of the 1,100 offspring, 1,094 F1 were successfully genotyped
via GBS, resulting in 0.42� genome coverage per individual fish.
Variant calling and basic quality filtering generated a dataset of
171,923 SNPs. Overall, 21 families from 10 out of the 13 se-
quenced F0 fishes were identified by Valenza-Troubat et al.
(2021a, 2021b) when reconstructing the pedigree of the popula-
tion. The largest family included 87 offspring and was used to as-
semble the sex-averaged linkage map. A total of 21,665 SNPs
were polymorphic in this family and passed the chi-square test,
and 19,861 were successfully mapped to 24 LGs, amounting to
1,830 when not accounting for the comapping loci (Fig. 2).
Inspection of SNPs showed that there was good congruence be-
tween the physical location of SNPs on the map vs the genome.

Table 1. Summary of the phenotypes height at 25%, 50%, and 75%
of the body (H25, H50, and H75, respectively), PL, EW, and net gains
traits associated (DH25, DH50, DH74, DPL, and DEW, respectively)
across the whole F1 population and for the largest family.

November 2017 October 2018 November 2019

All n¼1,094 n¼719 n¼694

Mean SD Mean SD Mean SD

H25 49.71 9.02 66.94 13.51 90.10 15.70
H50 59.45 11.02 79.99 16.39 105.53 18.65
H75 48.58 9.91 61.26 12.69 85.63 15.80
PL 156.79 23.92 200.64 35.36 264.09 40.44
EW 89.90 41.85 191.93 99.89 426.34 177.93
DH25 15.85 7.80 39.08 11.21
DH50 18.75 8.42 44.34 12.36
DH75 11.08 6.77 35.54 10.19
DPL 40.03 18.00 103.59 27.31
DEW 95.83 64.45 330.78 147.12

Family n 5 87 n 5 68 n 5 67

Mean SD Mean SD Mean SD

H25 52.21 7.95 73.71 11.32 96.52 12.64
H50 63.10 9.29 86.87 13.41 111.90 14.77
H75 52.85 8.99 66.72 9.75 92.36 12.39
PL 167.59 21.32 218.19 30.04 280.78 33.07
EW 107.43 37.85 238.01 89.61 498.52 159.82
DH25 20.43 6.53 42.78 9.21
DH50 22.46 6.92 46.84 9.89
DH75 12.88 5.54 37.79 8.33
DPL 47.91 15.91 109.31 23.15
DEW 125.99 60.54 384.63 135.00

Included are the number offspring phenotyped (n), mean, and SD.
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LG numbers were randomly assigned, as no previous reference

had been published. The genetic map spanned 1,335.46 cM, with

an average marker distance of 0.73 cM. The largest gap was on

LG14 and was 4.10 cM long. The longest and shorter LGs were 17

(82.89 cM) and 8 (48.14 cM), respectively (Table 2).

QTL mapping revealed rare variants associated
with growth
The genome-wide significant thresholds for QTL mapping were

established at LOD values between 4.60 and 4.81 for the 10

phenotypic traits across 3 years (Table 3). In total, 8 significant

QTLs were identified on 4 locations in 3 LGs (Fig. 3). Six of these

QTLs were for traits recorded during the first measurement

(November 2017), and 2 for the last measurement (November

2019). In particular, 3 QTLs detected for H25, PL, and EW mea-

sured at the first time point comapped on LG3 (between 23.2 and

24.9 cM). A second QTL was mapped to LG3 at 52.1 cM for H75

from the first measurement. Additionally, the traits PL and EW

from 2017 were associated to a second locus, at the top of LG18.

The percentage of phenotypic variance explained (PVE) by the

2017 QTLs ranged from 22.1% to 25.3%. In the last measurement,

2 QTLs for DH75 and DPL were found to comap to LG14 (between

17 and 17.1 cM), with PVE of 39.7 and 31.1, respectively (Table 3).

No QTLs were found for the middle measurement (October 2018)

and for all other traits in 2017 and 2019.

Genome-wide association found strongly
associated SNPs
A total of 1,024 F1 individuals had both genotypic and phenotypic

data for all measurements. After filtering based on Mendelian

errors, MAF, and LD pruning, 107,067 SNPs were left and used in

the GWAS. Model selection in GAPIT resulted in no PCs to be used

as covariates in any of the traits (Fig. 4a). QQ plots showed that

FarmCPU adequately accounted for the confounding effects of

family and population structure (Fig. 4b). A total of 93 SNPs were

significantly associated [�log 10(q) > 7.03] with at least 1 of the

10 traits measured at each year of phenotyping (Fig. 4c;

Supplementary Table 1). Only DH75 in October 2018 and

November 2019 had no significant association. Of the 93 SNPs, 15

were associated with more than 1 trait. These included 4, 7, and 4

SNPs associated with measurements at the first, second, and

third time point, respectively. No common SNPs were identified

among different years. Significant associations were in some

cases found for SNPs <0.5 Mb apart, highlighting hot spots on

chromosomic regions. A total of 10 hot spots were identified: 2 on

LG1, 1 on LG2, 2 on LG3, 2 on LG5, 1 on LG6, 1 on LG10, and 1 on
Fig. 1. Distribution of the PL measurements in November 2017
(n¼1,094), October 2018 (n¼ 719), and November 2019 (n¼ 694).

Fig. 2. Visualization of the sex-averaged map built for the largest segregating family (n¼ 87). The 24 LGs represent the expected 24 Pseudocaranx
georgianus chromosomes.
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LG18. Six of these included associations for traits measured in
different years (Supplementary Table 1).

Discussion
We constructed the first genetic map for trevally, and we were
able to use this map to determine genomic regions associated
with phenotypic growth traits. Our map included 19,861 SNPs
across 24 LGs and confirmed the 24 mega-scaffolds of the trevally
reference genome (Catanach et al. 2021). A linkage map built for
yellowtail kingfish (Seriola lalandi), the closest species to trevally
for which a map has been constructed, was also resolved into 24
LGs (Nguyen et al. 2018), consistent with our findings. The map
built here for trevally was 1,335.46 cM in length, which is within
the range of map length expected for many teleost fish. For ex-
ample, the map assembled here is longer when compared with
the yellowtail kingfish map, similar in length to the map of the
Australasian snapper (Chrysophrys auratus) (Ashton et al. 2019)
and shorter when compared with the European sea bass
(Dicentrarchus labrax) (Griot et al. 2021).

Eight significant QTLs related to growth were mapped to 3 of
the trevally LGs. Other studies in teleost have found multiple
QTLs affecting growth such as in Atlantic salmon (Tsai et al. 2015;
Besnier et al. 2020), Australasian snapper (Ashton et al. 2019),
spotted sea bass (Lateolabrax maculatus) (Liu et al. 2020), or yellow-
tail kingfish (Nguyen et al. 2018), supporting the hypothesis of a
polygenic regulation. No significant QTLs were identified with
QTL mapping for the second time point, October 2018. In the seg-
regating family used for QTL mapping, the number of offspring
decreased from 87 in 2017 to 68 in 2018 and 67 in 2019 as the re-
sult of natural mortality. Although some statistically significant
QTLs were found in the measurements made in the latter period
of the experiments, the smaller sample sizes in the 2 last meas-
urements reduced the power of the study, which could explain
the absence of QTLs detected in October 2018. Indeed, sample
size is known to influence the power of a study to detect QTLs
(Hong and Park 2012) and is regularly discussed as one of the
most important concerns when designing a mapping experiment
(Ashton et al. 2017). For the same reason, QTL mapping was not
performed on the smaller families present in this breeding popu-
lation. Interestingly, 2 traits (PL and EW) shared the same QTLs
on 2 LGs in the first measurement period (November 2017). This
is consistent with the level of high genetic and phenotypic corre-
lations reported for body length and body weight (Valenza-
Troubat et al. 2021b). These findings suggest that selection ap-
plied on easily measurable traits such as length will result in the
concomitant improvement of more difficult to assess, yet valu-
able, growth traits (such as weight) in the breeding of trevally.

GWAS identified 113 associations with growth, corresponding
to 93 different SNPs spanning 22 LGs, further supporting the hy-
pothesis of a polygenic basis of growth-related traits in trevally.
Growth is considered as a complex trait and has been found to be
polygenic across the tree of life, in very diverse taxa from plants,
like in the model species Arabidopsis thaliana (Wieters et al. 2021),
to vertebrates like humans (Sinnott-Armstrong et al. 2021) and
other fish species (e.g. Liu et al. 2014; Yang et al. 2020; Debes et al.
2021). In our study, a lower number of loci were found with the
QTL mapping experiment than with the GWAS, which can be
explained by the smaller amount of genetic variation represented
in the single F1 family compared with the overall breeding popu-
lation, which was derived from 13 parental individuals. Four
QTLs and 15 SNPs were found to have a significant association
with more than 1 trait. This was expected, as the different pheno-
types were all deduced from the PL and they all then measured
the same process underlying growth.

For each trait, the markers found in association were different
from a year to another, both in QTL mapping and in GWAS.
These differences could be due either to significant loci changing

Table 2. Marker statistics of the linkage map constructed from
the largest trevally family.

LG Number of
markersa

Length (cM) Average distance
between markers (cM)

1 85 61.27 0.72
2 80 58.41 0.73
3 81 57.26 0.71
4 68 49.34 0.73
5 81 56.69 0.70
6 65 51.72 0.80
7 87 60.09 0.69
8 70 48.14 0.69
9 78 54.43 0.70
10 84 57.22 0.68
11 82 61.88 0.75
12 71 49.30 0.69
13 79 59.00 0.75
14 64 53.51 0.84
15 67 52.84 0.79
16 67 56.27 0.84
17 108 82.89 0.77
18 82 54.95 0.67
19 80 53.82 0.67
20 71 55.04 0.78
21 65 52.83 0.81
22 73 49.29 0.68
23 63 45.39 0.72
24 79 53.88 0.68
Total 1,830 1.335.46 0.73

a Count after removal of comapping.

Table 3. List of significant QTL detected for height at 25% and 75% of the peduncle length (H25 and H75, respectively), PL, EW, and net
gain for H75 (DH75) and PL (DPL) in November 2017 (Nov17) and November 2019 (Nov19), using a high-density linkage map.

Time Trait LG Peak position (cM) SNP at peak LOD threshold LOD at peak PVE (%)

Nov17 H25 3 23.2 trevally000114_4454829 4.71 4.73 22.1
Nov17 PL 3 24.9 trevally000114_4498123 4.71 4.83 22.6
Nov17 EW 3 24.9 trevally000114_4498123 4.60 5.39 24.8
Nov17 H75 3 52.1 trevally000114_23355470 4.64 5.50 25.3
Nov17 PL 18 0.0 trevally001200_2242455 4.71 4.88 22.8
Nov17 EW 18 0.0 trevally001200_2242455 4.60 4.82 22.5
Nov19 DPL 14 17.0 trevally001025_25205374 4.81 5.41 31.0
Nov19 DH75 14 17.6 trevally001025_25180484 4.69 7.36 39.7

For each QTL the position on the LG, the significance threshold, the LOD at the peak, the SNP name, and the PVE are shown.
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over time, by switching on or off, or to environmental variation,
as it was observed in other QTL mapping studies that investi-
gated traits highly affected by the environment (Sun et al. 2017;
Ashton et al. 2019). However, there were some hot spot regions of
0.5 Mb that contained SNPs associated with different traits and
different years. Noteworthy is the chromosomic region at the top
of LG5, where 2 hot spots were found, 1 between 0 and 0.5 Mb (for
DEW and PL in 2018, and H75 and ES in 2019) and one between
1.4 and 1.8 Mb (for DEW, H25, H50, and PL in 2019). Future studies
should investigate these further. In addition to these hot spots,
we also identified SNP regions that were significant in both QTL
and GWAS analyses. Specifically, by comparing the relative phys-
ical positions of the SNPs, 2 regions found with QTL mapping
appeared to be in close proximity with 2 significant SNPs identi-
fied by GWAS. In particular, the QTLs for H25, PL, and EW mea-
sured in 2017 spanned the 4.45- to 4.50-Mb region on
chromosome 3 (corresponding to 23.20–24.90 cM on LG3) and SNP
trevally000114_4956408, located at 4.96 Mb on chromosome 3,
was found to be significant for PL in 2019 with GWAS; and the
QTLs for DH75 and DPL in 2019, encompassing the 25.18–25.21 Mb
region on chromosome 14 (17.02–17.59 on LG14), are close to SNP
trevally001025_25939455, located at 25.94 Mb on chromosome 14
and significant for DH50 and DPL in 2019 (Fig. 5 and Table 3;
Supplementary Table 1). Being identified with 2 different

statistical analyses and for multiple traits across 2 years, these 2

regions are then of particular interest for the understanding of

the genetic determinism of growth in trevally. A BLAST search of

the 100-kb regions flanking those markers against the NCBI nu-

cleotide database did not return any sequence similarities, indi-

cating that they are located in noncoding or in nonannotated

regions. Intergenic regions can still have a functional role in gene

expression and regulation (Wyrick and Young 2002). For example,

these SNPs could be located in an intron that acts as a regulatory

region (promoter, enhancer, silencer, or insulator).
Compared with the heritability estimates found in Valenza-

Troubat et al. (2021a, 2021b), the present analysis still seems un-

derpowered. The range of heritability estimates was moderate to

high (0.67 6 0.05 to 0.76 6 0.06) for the measured traits (H25, H50,

H75, PL, and EW) and moderate (ranging from 0.28 6 0.07 to

0.68 6 0.07) for the net gain traits (DH25, DH50, DH75, DPL, and

DEW), and it remained consistent throughout the experiment. In

the present study, PVEs ranged from 22.1% to 47.36% for the QTL

mapping study and from 4.74% to 46.81% for GWAS, indicating

that neither techniques were able to capture all of the genetic

components of growth traits (Table 4). Additional genetic interac-

tions, other than additive effects, should be considered. While

heritability is a key feature of a trait indicating its potential for

improvement via selection, polygenic traits are often influenced

by nonadditive genetic effects such as dominance or epistasis

(Glover et al. 2017). Understanding the genetic mechanisms that

underlie a trait is an important part of explaining phenotypic di-

versity. This is particularly relevant when looking at traits related

to fitness (e.g. growth, shyness, foraging, or predator awareness)

in populations that are undergoing domestication but still occa-

sionally interbreed with wild conspecifics (e.g. when new brood-

stock is caught and added).

Future directions
In this study, the combination of QTL mapping and GWAS en-

abled the identification of genomic regions that control growth in

a large captive trevally breeding population. From a farming per-

spective, parameters such as stocking density (Irwin et al. 1999) or

feed availability and quality (Holm et al. 1990) can be carefully

managed to accelerate fish growth in a land-based aquaculture

facility. However, when aiming to develop new species for aqua-

culture, it is fundamental to understand the genetic architecture

of commercially important traits that can potentially be en-

hanced through selective breeding. The findings of this study pro-

vide a useful framework for determining the genetic basis for

growth traits in trevally. The identification of multiple QTLs

through QTL mapping and genetic markers commonly involved

in growth-related traits via GWAS represents an essential step for

the implementation of a molecular breeding program for trevally.

With a highly polygenic trait such as growth, genomic selection

might be the most effective strategy to improve economic traits

in this species. With this objective in mind, we are in the process

of developing a medium-density SNP array to be used for the rou-

tine screening of the trevally breeding population (though note

that such an SNP chip would also be useful for screening wild

populations). Additionally, fine mapping, confirmation, and an-

notation of relevant regions identified in this study will bring a

deeper understanding of the genetic architecture of growth in

this species, and possibly also closely related teleost species.

Fig. 3. Eight significant QTL associated with growth traits were found in
trevally, across 3 LGs (LG3, LG14, and LG18). In November 2017, 2 QTLs
were found associated with peduncle length (PL_1_2017 and PL_2_2017,
on LG3 and LG18, respectively), which were also associated with EW
(EW_1_2017 and EW_2_2017). In the same year, 2 more QTLs were found
associated with height at 25% (H75_2017) and 75% (H75_2017) of the
peduncle length, both on LG3. Finally, 2 QTLs were found in November
2019, 1 for net gain in peduncle length (PL_2019) and one for net gain in
height at 75% of the peduncle length (H75_2019), both on LG14.
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Data availability
Supplementary Table 1 contains a list of SNP-trait associations
detected with GWAS for height at 25%, 50%, and 75% of the PL
(H25, H50, and H75 respectively), PL, EW, and net gain traits
(DH25, DH50, DH75, DPL, DEW) in November 2017 (Nov17),
October 2018 (Oct18), and November 2019 (Nov19). For each SNP,

the table shows the physical position on the LG, the P-value, the

MAF, the FDR-adjusted P-value, and the percentage of variance

explained (PVE).
Trevally (araara) are a taonga (treasured) species to M�aori, the

Indigenous people of Aotearoa New Zealand. All genomic data

obtained from taonga species have whakapapa (genealogy that

includes people, plants and animals, mountains, rivers, and

winds) and are therefore taonga in their own right. These data

are tapu (sacred) and tikanga (customary practices, protocols,

and ethics) determine how people interact with these data. Thus,

all the genomic data have been deposited in a managed reposi-

tory that controls access. Raw and analyzed data are available

through the Genomics Aotearoa data repository at https://repo.

data.nesi.org.nz/. This was done to recognize M�aori as important

partners in science and innovation and as intergenerational

guardians of significant natural resources and indigenous knowl-

edge.
Supplemental material is available at G3 online.
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Fig. 4. GWAS results for the net gain in PL (DPL) in November 2019. a) Summary of BIC for the optimal number of PCs to use in the model. b) QQ-plot of
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QQ-plot under the null hypothesis of no association between the SNP and the trait. c) Manhattan plot of the results of the GWAS. On the X-axis is the
physical position of the SNPs on the genome divided by chromosomes, and on the Y-axis is the negative log base 10 of the P-values. The horizontal green
line represents the significance threshold.

Fig. 5. Comparison of QTL (left) and SNP associated (right) with the net
gain in PL (DPL) in November 2019.
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